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Outline

SCIENCE AND ENGINEERING

il  Topic: 2D and 1D van der Waals Materials

¢ Part I: 2D Materials — Graphene

= Thermal conductivity fundamentals
= Physics of heat conduction in 2D
= Thermal conductivity of graphene

+ Part ll: Practical Applications of Graphene
= Thermal interface materials
= Electromagnetic interference shielding

¢ Partlll: 1D Materials — TaSe,

= Current carrying capabilities
= Composites with 1D materials

¢ Qutlook

Alexander A. Balandin, University of California, Riverside
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Fundamentals of Heat Conduction in
Graphene and Few-Layer Graphene

Definitions and Basic Theor . . .
y RT thermal conductivity of important materials:

Silicon (Si): 145 W/mK

Fourier’s law:

Q_ _KVT Si0,: 0.5 — 1.4 W/mK
Copper: 385 - 400 W/mK
Phonon vs. electron conduction: RT thermal conductivity for carbon materials:
2 2 Diamond: 1000 — 2200 W/mK
Ke _7° (kg T
. 3| e Graphite: 20 — 2000 W/mK (orientation)

DLC: 0.1 — 10 W/mK
CNT: ~3000 — 3500 W/mK

6l0) - _
Q _ Z Nq,i (Q)hwi (CI)—, CNT: ~1758 — 5800 W/mK
q,]

aq According to J. Hone, M. Whitney, C. Piskoti, A. Zettl, A. Phys.
Rev. B 1999, R2514 (1999)

Heat current carried by phonons :

Alexander A. Balandin, University of California, Riverside
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Thermal Conductivity of Bulk Carbon Materials
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Alexander A. Balandin, University of California, Riverside

< Bulk graphite: 2000 W/mK at RT

< Order of magnitude difference in
high-quality graphite depending on
the method and polycrystallinity

A.A. Balandin, "Thermal
properties of graphene and
nanostructured carbon
materials," Nature Materials, 10,
569 - 581 (2011).

What happens with
thermal conductivity of 3D
crystal if we thin it down to
2D crystal?
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Thermal Conductivity at Nanoscale:
Extrinsic Phonon Transport Regime

Thermal conductivity usually decreases as one goes from bulk

material to nanostructure or thin film <Thermal conductivity of bulk Si at room

160 g — — . temperature: K= 148 W/m-K
< "Si Bulk Diffuse Scattering (p=0)
g 1401 | € Thermal conductivity of Si nanowire with
= 120} cross section of 20 nm x 20 nm: K=13 W/mK
>.
> L
é 100} = Phonon thermal conductivity:
O
2 80 K,=@/3)C,vA
5 60} |
© Si Nanowire: A - Boundary-limited MFP (A=v7):
< 40 ]
=
o 20 SiNanowire: B . 1 . v 1- P
I 1 —_—
i A 7, D1+p
300 400 500 600 700 800
TEMPERATURE (K
9 K, ~C,0A ~C v’ry ~C 0D

J. Zou and A.A. Balandin, J. Appl. Phys., 89, 2932 (2001).
Alexander A. Balandin, University of California, Riverside What happens In St”Ctly 2D SyStem?
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Thermal Conductivity of 2D Crystals In
Intrinsic Phonon Transport Regime: Infinity

- The momentum conservation in 1D and 2D systems with inharmonicity leads to the
divergence of the intrinsic thermal conductivity K with the system size
- Thermal conductivity remains finite and does not depend on the system size in 3D
.

Alexander A. Balandin, University of California, Riverside
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Divergence of the Lattice Thermal
Conductivity in 2D and 1D Crystal Lattices

The intrinsic thermal conductivity of 2-D or 1-D inharmonic crystals is anomalous.

30— 0.5
25 - 04F
% 20 - % 03
15 - 02F
10, 1I6 i 5:4 i - 01,
(a) N (b)

Thermal conductivity in 2D lattice vs. N,.

Data is after S. Lepri et al. Phys. Rep., 377, 1 (2003).

Alexander A. Balandin, University of California, Riverside

K ~log(N) in 2D
K~ N¢%in 1D, o#1
N — system size
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Converting Raman Spectrometer to
Thermometer — The Plan of the Experiment

D band: A;; (~1350 cm™1); G peak: E,y; 2D band
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A.A. Balandin, MRS Medal Plenary Talk at
MRS Fall Meeting, Boston November 2013.

Alexander A. Balandin, University of California, Riverside

Laser light

Reflected light

4 . !., 4 v r
7 5 : Graphene layer
s Heat sink

dioxide

Silicon

IEEE Spectrum illustration of the first measurements
of thermal conductivity of graphene carried out at UC
Riverside.

Details: A.A. Balandin et al., Nano Letters, 8, 902
(2008); A.A. Balandin, Nature Mat., 10, 569 (2011).
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Optothermal Measurement of Graphene
Thermal Conductivity

Bilayer graphene ribbon bridging 3-um
trench in Si/SiO, wafer

K =(L/2a W) y;(Aw/AP)™.
Connect AP, € 2 AP through calibration

G PEAK POSITION SHIFT (cm™)

4

= Mg L]

(a2}

M

—> Laser acts as a heater: APg
- Raman “thermometer”: AT =Aw/y4

—> Thermal conductivity: K=(L/2agW)(4Ps/AT )
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A.A. Balandin, et al., Nano Letters, 8, 902 (2008) — cited 12,400 as of March 2021

Alexander A. Balandin, University of California, Riverside



Evolution of the Intrinsic Thermal
Conductivity in Low-Dimensional Systems
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Experiment and Umklapp Scattering Theory
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S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P.
Pokatilov, C.N. Lau and A.A. Balandin,
"Dimensional crossover of thermal transport in few-
layer graphene,” Nature Materials, 9, 555 (2010).

Alexander A. Balandin, University of California, Riverside
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W.-R. Zhong et al., Appl. Phys. Lett., 98, 113107 (2011).

Consistent with the prediction:

S. Berber,Y.-K. Kwon, and D. Tomanek,
Phys. Rev. Lett., 84, 4613 (2000).
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Klemens Model of Heat Conduction:
Bulk Graphite vs. Graphene

Phonon Thermal ’
Conductivity: Kp = (1/3)Cpl) A ’ _________,.—_J__:/E
K,=Z, jCj (a))uj2 (w)r; (w)dw ]
1800 s 2| —
1600} =1
o o [
-.’;' 12001 il
1000 L |

Umklapp life-time, which defines MFP:

Frequency (¢
[ =]
=

ﬁﬂﬂ- 2
i Us ~— 2 2
Zl]l]‘ 7/3 kBT @
ﬂA r M K r VDOS

2D: C(w) ~ o 2 K~T1w?
P.G. Klemens, J. Wide Bandgap Materials, 7, 332 (2000). 3D: C(a)) ~ P 19

Alexander A. Balandin, University of California, Riverside
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The Role of the Long-Wavelength
Phonons in Heat Transport in Graphene

Thermal conductivity in graphene: MFP = L — physical size of the system
K o L Jadmm: I h{m’” ]

- Limitation on MFL: L=7 Vv,

@, @ O, @
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Alexander A. Balandin, University of California, Riverside



Theories of Heat Conduction In
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Phononics of Graphene and Related Materials

I: I Read Online

Alexander A. Balandin

"Il Cite This: ACS Nano 2020, 14,5170-5178

ACCESS I [l Metrics & More

| Article Recommendations

ABSTRACT: In this Perspective, | present a concise account
concerning the emergence of the research field investigating the
phononic and thermal properties of graphene and related
materials, covering the refinement of our understanding of
phonon transport in two-dimensional material systems. The
initial interest in graphene originated from its unique linear
energy dispersion for electrons, revealed in exceptionally high
electron mobility, and other exotic electronic and optical
properties. Electrons are not the only elemental excitations
influenced by a reduction in dimensionality. Phonons—quanta
of crystal lattice vibrations—also demonstrate an extreme
sensitivity to the number of atomic planes in the few-layer
graphene, resulting in unusual heat conduction properties. 1
outline recent theoretical and experimental developments in the
field and discuss how the prospects for the mainstream

electronic application of graphene, enabled by its high electron mobility, gradually gave way to emerging real-life products
based on few-layer graphene, which utilize its unique heat conduction rather than its electrical conduction properties.
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Effects of the Defects Introduced by
Electron Beam Irradiation
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Alexander A. Balandin, University of California, Riverside
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H. Malekpour, et al, Nanoscale, 8, 14608 (2016). 15
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Phonon Transport in Isotopically
Engineered Graphene
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S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin
) OC M -1/2 and R.S. Ruoff, "Thermal conductivity of isotopically modified graphene,”
Nature Materials, 11, 203 (2012).

Alexander A. Balandin, University of California, Riverside
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Thermal Management with Graphene

Source: the composite image consists of photos available on Internet ;-

Alexander A. Balandin, University of California, Riverside



N\

NDL

| Nano-Device Laboratory >

Thermal Interface Materials

Heat Sink

TIM-2

- TIM-1

->

- Conventional TIMs: K=1-5 W/mK at the BLT
volume fractions f of filler ~50% at room R R R
=7 +
temperature effective I 4
- Companies need K=10-30 W/mK TiM

Current TIM based on polymer, grease filled with silver, alumina require 50-70% loading
to achieve 1-5 W/mk.

Alexander A. Balandin, University of California, Riverside
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What is specifically good about graphene for composites?

£ [Liquid Phase
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K.M.F. Shahil and A.A. Balandin, "Graphene - multilayer
graphene nanocomposites as highly efficient thermal interface
materials," Nano Letters, 12, 861 (2012).

Alexander A. Balandin, University of California, Riverside

Few-layer graphene maintains high thermal
conductivity owing to its van der Waals

nature

Better coupling to matrix than CNTs
Inexpensive mass-production is possible

Weighting
the material
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Initial Results: Thermal Interface Materials
Base on Epoxy Composites
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K.M.F. Shahil and A.A. Balandin, "Graphene - multilayer
graphene nanocomposites as highly efficient thermal

interface materials,” Nano Letters, 12, 861 (2012).

Alexander A. Balandin, University of California, Riverside
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Y-X. Fu et al / International Journal of Thermal Sciences 86 (2014) 276-283
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Composites with Graphene and Boron Nitride

Alexander A. Balandin, University of California, Riverside
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F. Kargar, et al., "Thermal percolation threshold and thermal
properties of composites with high loading of graphene and

boron nitride fillers,” ACS Appl. Mater. Interfaces, 10, 37555
(2018). 21
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Thermal Percolation Threshold

a -
(@)12 @ Epoxy with graphene: experiment
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ey
= g
S 6 ,®
pn } ,
O 41 pristine epoxy .,/.’
g FK=022WmK _ @.-~
& 2F / &y
o A
| @~
‘.J B
0 10 20 30 40

Volume Fraction (%)

—_~
o
S

Thermal Conductivity (W/mK)

| @ Epoxy with h-BN: experiment
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40

Thermal conductivity of the epoxy composites with (a) graphene and (b) h-BN fillers. The thermal
conductivity depends approximately linear on the loading fraction till ;=30 vol.% in graphene
composites and =23 vol.% in h-BN composites. The maximum thermal conductivity
enhancements of x51 and x24 are achieved for the epoxy composites with graphene (f=43
vol.%) and h-BN (f=45 vol.%), respectively.

Alexander A. Balandin, University of California, Riverside
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Electromagnetic Interference Shielding

EM waves are
everywhere -
New materials
and technical
solutions are
needed!

Source: Science Media Centre 2 3

Alexander A. Balandin, University of California, Riverside
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EMI Background and Basics

- The reflection and transmission coefficients of the
EMI shielding composite can be calculated as R = |S;4]?

and T = |521|2.

- Knowing R and T, one can calculate the absorption
coefficient, A, for any incident EM wave as A =1 —

R-T.

- The effective absorption coefficient, A.7r =
(1-R—T)/(1 — R) defines the actual absorption
characteristic of the EMI shielding material since some
part of the incident EM wave energy is reflected at the
interface prior to being absorbed or transmitted through

It.

- The total shielding efficiency (SE;,:), which defines
the ability of the material to block the incident EM
radiation, is the sum of the shielding by reflection,
SEr = —10log(1 — R), and absorption, SE, =
—101og(T/1—R) = 10log(1 — Aesf) -

(b)

Alexander A. Balandin, University of California, Riverside

24
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Electromagnetic Interference EMI
Shielding — Measurements

X-Band frequency range: 8.2 GHz — 12.4 GHz

N EMI
characteristics -
the scattering
parameters, S;;,
measured using
the two-port
PNA system.

-
-
-
—

oS AN -
P St ot ORI 4

Extremely High Frequency (EHF) band: 220 GHz — 320 GHz

EMI shielding efficiency was determined from the measured scattering parameters using Agilent
N5245A vector network analyzer (VNA) with a pair of frequency extenders

Z. Barani, et al., “Graphene epoxy-based composites as efficient electromagnetic absorbers in the
extremely high-frequency band,” ACS Appl. Mater. Interfaces, 12, 28635 (2020).

Alexander A. Balandin, University of California, Riverside
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of Graphene Composites —

EMI Shielding and Thermal Management

\ A i~ M - .
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Efficient total EMI shielding, SE;,;~45 dB,
in the X-band frequency range, f =

8.2 GHz — 12.4 GHz, while simultaneously
providing the high thermal conductivity,

K ~ 8 Wm~1K™1, which is a factor of x35
larger than that of the base matrix material.

Alexander A. Balandin, University of California, Riverside

Mass Loading Fraction (wt%)

—>The composite works even below the electrical
percolation threshold — local coupling of EM wave
to the filler

—>Electrically insulating films can be efficient EMI
shield and dissipate the heat

F. Kargar, et al., "Dual-functional graphene composites for
electromagnetic shielding and thermal management," Adv. 26
Electron. Mater., 5, 1800558 (2019).
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Graphene Composites as EM Absorbers in
the Extremely High Frequency Band
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Alexander A. Balandin, University of California, Riverside
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- The main shielding mechanism in composites with the
low graphene loading in the sub-THz range is absorption.

Z. Barani, et al., “Graphene epoxy-based composites as efficient
electromagnetic absorbers in the extremely high-frequency
band,” ACS Appl. Mater. Interfaces, 12, 28635 (2020). 27
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Going from 2D to 1D Van der Waals
Materials

(a)
Quasi-2D van der '{ _"{ ‘{ <:| Quasi-1D van der

Waals Materials »‘ Waals Materials

—> Crystal structure of
monoclinic TaSe,,
with alternating layers
of TaSe,

- Cross section of the
unit cell,
perpendicular to the
chain axis (b axis).

- The side view: 1D
TaSe, nature of TaSe,
MoS, _ chains along the b
atomic threads axis.

Alexander A. Balandin, University of California, Riverside
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Quasi-1D Channel TaSe, Devices Fabricated
by Electron Beam Lithography

Quasi-1D bundles and BN capping

Schematic of the TaSes/h-BN quasi-1D /

guasi-2D nanowire heterostructures used for The metals tested for fabrication of Ohmic
the |-V testing. contacts included combinations of thin layers of
Cr, Ti, Au, Pd together with a thicker Au layer.
Range: 20 nm to 100 nm 29

Alexander A. Balandin, University of California, Riverside
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Quasi-1D Channel ZrTe; Devices
Fabricated by Shadow Mask Method

y &
&

.

Alexander A. Balandin, University of California, Riverside

(a) SEM image of a shadow
mask. (b) SEM image of the
pattern for Ti and Au
evaporation to create the
contacts. (c) AFM image of
the quasi-1D ZrTe,
nanoribbon device. AFM
characterization was used to
determine the nanowire
width and thickness (33-nm
in the present case). (d)
SEM image of another
quasi-1D ZrTe3 nanowire
device with a different cross-
sectional area. The scale
bars in (a), (b) and (d) are 50
um, 2 um and 1 um
respectively.
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Electrical Characteristics of Devices with
Quasi-1D TaSe,; Channels — Ohmic Contacts

- Current-voltage
characteristics of
TaSe, devices with
different channel
length.

— Linear characteristics
at low voltage
indicates good
Ohmic contact of
TaSe; channel with
the metal electrodes.
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Current Density in Quasi-1D TaSe,
Nanowires — Bundles of Atomic Chains

‘_Quasi-‘l D TaSe3

| =
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Voltage (V)

Alexanaer A. balanain, university or calirornia, Kiversiae

0 12 14 16

Resistivity is 2.6 — 6.4x10+ Q-cm.

—> High-field I-V
characteristics showing
the breakdown point. In
this specific device the
breakdown is gradual.

- Breakdown current
density of about 32
MA/cm2 — an order-of-
magnitude higher than
that for copper.

Open question: high
currents are sustained in
materials with low thermal
conductivity
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Testing Prototype Interconnects Implemented
with CVD Grown Quasi-1D Bundles of TaSe,
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A.A. Balandin and L. Bartels, SRC — Intel Corporation: Task 2796.001
Fabrication and Testing of Quasi-1D van der Waals Metal Interconnects

T. A. Empante, et al., “Low resistivity and high breakdown current density of 10 nm diameter van

der Waals TaSe; nanowires by chemical vapor deposition,” Nano Letters 19, 4355 (2019).

Alexander A. Balandin, University of California, Riverside
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Chemical Exfoliation of Bundles of
Quasi-1D van der Waals Materials

Polymer composite
films containing fillers

i comprised of quasi-1D
van der Waals
materials.

Fillers can exfoliation
into bundles of atomic
threads.

B These nanostructures
8 are characterized by

! extremely large aspect
= ratios of up to ~106.
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Electrically-Insulating Films with Quasi-1D
Fillers as EMI Shields in Sub-THz
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- The EMI shielding performance
of the films with the quasi-1D fillers
in EHF-band of sub-THz
frequencies: 60 dB to 70 dB.

- Composite films with only 1.3
vol% loading of exfoliated quasi-
1D fillers of TaSe3 and the film
thickness of 1 mm.

Z. Barani, F. Kargar, Y. Ghafouri, S.
Ghosh, K. Godziszewski, S.
Baraghani, Y. Yashchyshyn, G.
Cywinski, S. Rumyantsev, T. T.
Salguero, and A. A. Balandin,
“Electrically insulating flexible films
with quasi-1D van der Waals fillers as
efficient electromagnetic shields in the
GHz and sub-THz frequency bands”
Adv. Mater., 2007286, 2021.
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Outlook — Take Home Message

 The actual large-scale industrial applications of graphene may not
be what you thought they would - think thermal.

 The low-dimensionality game does not end with the 2D van der
Waals materials — there are 1D van der Waals materials out there.

/C\ /C\ _~ dJackets, rackets, hair dye and satellites:
& How graphene is changing the global
I I economy

To learn more about
applications of 2D and 1D
materials visit the group site:

https://balandingroup.ucr.edu/
36
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